Involvement of purinergic P2X and P2Y2 receptors in urinary bladder sensation

نویسنده

  • Xiaowei Chen
چکیده

Interstitial cystitis (IC)/painful bladder syndrome (PBS) is a functional visceral disorder characterized by increased bladder activity and chronic pelvic pain in the absence of a pathobiological condition. Enhanced sensory transduction of peripheral bladder afferents is hypothesized to contribute to the pain and mechanical hypersensitivity of IC/PBS patients. The aim of this thesis is to test the hypothesis that purinergic receptors, including ionotropic P2X and metabotropic P2Y, are important for sensory transmission in bladder afferent neurons and may be involved in bladder hypersensitivity after bladder tissue insults. Electrophysiological, single cell RT-PCR and immunohistochemistry techniques were performed in bladder afferent neurons from naïve and bladder inflamed mice to test the hypothesis. In Chapter 2, I characterized the distribution and function of P2X receptors in thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglia (DRG) neurons innervating the urinary bladder, and found that LS and TL bladder neurons have differential purinergic signaling and distinct membrane electrical properties. In Chapter 3, I examined the sensitization of bladder afferent neurons and the plasticity of P2X receptor function in a mouse model of chemical induced bladder inflammation. P2X-mediated signals in LS and TL bladder neurons after bladder inflammation were enhanced compared with those in saline-treated controls, suggesting the importance of P2X in bladder hypersensitivity associated with cystitis. In Chapter 4, the modulation of P2Y on P2X function and the colocalization of P2Y and P2X were examined in bladder sensory neurons. It has been found that P2Y2 receptor enhances bladder sensory neuron excitability and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The P2Y2 receptor sensitizes mouse bladder sensory neurons and facilitates purinergic currents.

Sensitization of bladder afferents is an underlying contributor to the development and maintenance of painful bladder syndrome/interstitial cystitis. Extracellular purines and pyrimidines (e.g., ATP and UTP), released during bladder distension or from damaged cells after tissue insult, are thought to play an important role in bladder physiological and pathological states by actions at ionotropi...

متن کامل

Alterations in P2X and P2Y purinergic receptor expression in urinary bladder from normal cats and cats with interstitial cystitis.

Purinergic mechanisms appear to be involved in motor as well as sensory functions in the urinary bladder. ATP released from efferent nerves excites bladder smooth muscle, whereas ATP released from urothelial cells can activate afferent nerves and urothelial cells. In the present study, we used immunohistochemical techniques to examine the distribution of purinoceptors in the urothelium, smooth ...

متن کامل

P2X and P2Y purinergic receptors on human intestinal epithelial carcinoma cells: effects of extracellular nucleotides on apoptosis and cell proliferation.

Extracellular nucleotides interact with purinergic receptors, which regulate ion transport in a variety of epithelia. With the use of two different human epithelial carcinoma cell lines (HCT8 and Caco-2), we have shown by RT-PCR that the cells express mRNA for P2X1, P2X3, P2X4, P2X5, P2X6, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y12 receptors. Protein expression for P2Y1 and P2Y2 receptors w...

متن کامل

ATP evokes Ca2+ signals in cultured foetal human cortical astrocytes entirely through G protein‐coupled P2Y receptors

Extracellular ATP plays important roles in coordinating the activities of astrocytes and neurons, and aberrant signalling is associated with neurodegenerative diseases. In rodents, ATP stimulates opening of Ca2+ -permeable channels formed by P2X receptor subunits in the plasma membrane. It is widely assumed, but not verified, that P2X receptors also evoke Ca2+ signals in human astrocytes. Here,...

متن کامل

Control of P2X3 channel function by metabotropic P2Y2 utp receptors in primary sensory neurons.

Purinergic signaling contributes significantly to pain mechanisms, and the nociceptor-specific P2X3 ATP receptor channel is considered a target in pain therapeutics. Recent findings suggesting the coexpression of metabotropic P2Y receptors with P2X3 implies that ATP release triggers the activation of both ionotropic and metabotropic purinoceptors, with strong potential for functional interactio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016